Glossary category : Functional land use
1- Functional land use
a
Agroforestry
A type of land use that combines production on the same plot of land, from annual agricultural activities (such as crops and pasture) and from delayed long-term production by trees (for example timber and services). This is obtained either by planting trees on agricultural land or by cropping (for example after thinning) on forested land. Plots that combine arable intercrops with forestry trees are silvoarable plots, while wooded plots with pasture under the tree canopy are known as silvopastoral plots.
Attribute
A characteristic of the soil system contributing to the generation of a soil function. One attribute can contribute to more soil functions. Attributes can be quantified with indicators A concrete aspect of the system (in the case of LANDMARK: plausibly linked to a soil function) for which indicators can be envisaged. Soil pH, NO3-transport to groundwater, NH3-release, water infiltration rate, soil respiration, crop management, pedo-climatic zone, and land use are examples of attributes which are relevant for LANDMARK’s soil functions. Attributes can be quantified by applying a suitable indicator.
b
Biodiversity and habitat
The multitude of soil organisms and processes, interacting in an ecosystem, making up a significant part of the soil‘s natural capital, providing society with a wide range of cultural services and unknown services.
c
Carbon sequestration
The capacity of a soil store carbon in a non-labile form with the aim to reduce the CO2 concentration.
Climate regulation
The capacity of a soil to reduce the negative impact of increased greenhouse gas (i.e., CO2, CH4, and N2O) emissions on climate, among which its capacity to store carbon.
CO2 equivalent
A metric measure used to compare the emissions from various greenhouse gases on the basis of their global-warming potential (GWP), by converting amounts of other gases to the equivalent amount of carbon dioxide with the same global warming potential. Carbon dioxide equivalents are commonly expressed as million metric tonnes of carbon dioxide equivalents, abbreviated as Mt CO2e. The carbon dioxide equivalent for a gas is derived by multiplying the tonnes of the gas by the associated GWP: Mt CO2e = (million metric tonnes of a gas) * (GWP of the gas). For example, the GWP for methane is 21 (minus 1 unit if pertaining to biogenic CH4 as that would alternatively have become 1 CO2) and for nitrous oxide 310. This means that emissions of 1 million metric tonnes of methane and nitrous oxide respectively is equivalent to emissions of 21 and 310 million metric tonnes of carbon dioxide.
e
Ecosystem service
Benefits (provisioning, regulating, supporting and cultural services) that people obtain from ecosystems, including attributes and processes through which natural and managed ecosystems can sustain ecosystem functions (http://www.millenniumassessment.org/en/index.html)
Edaphon
The community of soil organisms (microbes, fungi, nematodes, worms, insects, protozoa, etc.)
f
Functional Land Management
A conceptual framework for optimising the supply of soil-based ecosystem services, grouped together in five overarching soil functions, to the demands at a range of spatial scales, with a view to simultaneously meeting agronomic and environmental policy objectives (Schulte et al., 2014; O’Sullivan et al., 2015).
More info:
Soil functions concept http://landmarkproject.eu/soil-functions-concept/
[PAPER] Schulte, R.P.O. et al. (2014), Functional land management: A framework for managing soil-based ecosystem services for the sustainable intensification of agriculture, Environmental Science & Policy, 38, 45-58, ISSN 1462-9011,. doi: 10.1016/j.envsci.2013.10.002
[PAPER] Schulte, R.P.O. et al. (2015), Making the Most of Our Land: Managing Soil Functions from Local to Continental Scale, Frontiers in Environmental Science, 3, 81. doi:10.3389/fenvs.2015.00081
[PAPER] O’Sullivan, L. et al. (2015) Functional Land Management for managing soil functions: A case-study of the trade-off between primary productivity and carbon storage in response to the intervention of drainage systems in Ireland, Land Use Policy, 47, 42-54, ISSN 0264-8377. doi:10.1016/j.landusepol.2015.03.007
[PAPER] Coyle, C. et al. (2016) A Functional Land Management conceptual framework under soil drainage and land use scenarios, Environmental Science & Policy, 56, 1462-9011. doi: 10.1016/j.envsci.2015.10.012
[PAPER] Valujeva, K. et al. (2016) The challenge of managing soil functions at multiple scales: An optimisation study of the synergistic and antagonistic trade-offs between soil functions in Ireland, Land Use Policy, 58, 335-347, ISSN 0264-8377. doi:10.1016/j.landusepol.2016.07.028.
[PAPER] Vrebos, D. et al. (2017), The Impact of Policy Instruments on Soil Multifunctionality in the European Union, Sustainability. doi:10.3390/su9030407
[PAPER] O’Sullivan, L. et al. (2017) Functional Land Management: Bridging the Think-Do-Gap using a multi-stakeholder science policy interface. Ambio. doi:10.1007/s13280-017-0983-x
[PRESENTATION] Nuffield International conference 2016 by Rogier Schulte
[PRESENTATION] Bioeconomy Forum Functional Land Management:A governance tool to develop the bio-economy? by Rogier Schulte & Dina Poplunga
Relevant citations:
Glæsner, N. et al. (2014) Do current European policies prevent soil threats and support soil functions?, Sustainability, 6 (12), 9538-9563. doi:10.3390/su6129538
Greiner, L. et al. (2017) Soil function assessment: review of methods for quantifying the contributions of soils to ecosystem services, Land Use Policy, 69, 224-237, ISSN 0264-8377. doi:org/10.1016/j.landusepol.2017.06.025
i
Indicator
An instrument (measurement, dataset, model, expert elicitation system) for quantifying an attribute, providing quantitative information of the system. For instance, the protocol for soil sampling and pH (KCL) measurement is an indicator for the ‘soil pH’, and the extraction, counting, identification of nematodes and calculation of the maturity index is an indicator for the ‘nematode community in the soil system’. Note that this definition differs from the daily practice where, for example, the pH or the nematode community as such, and not the protocol, is seen as the indicator.
l
Land cover
The observed (bio)physical cover of the Earth’s surface. The main classes in the LUCAS land cover nomenclature are as follows (http://ec.europa.eu/eurostat/ramon/other_documents/lucas/index.htm):
Classes Nomenclature A00 Artificial land B00 Cropland C00 Woodland D00 Shrubland E00 Grassland F00 Bareland G00 Water H00 Wetland Land use
The socio-economic purpose of the land. The main classes in the LUCAS land use nomenclature (http://ec.europa.eu/eurostat/ramon/other_documents/lucas/index.htm) are as follows:
Classes Nomenclature U110 Agriculture U120 Forestry U130 Fishing U140 Mining and quarrying U150 Hunting U210 Energy production U220 Industry and manufacturing U310 Transport, communication networks, storage and protective works U320 Water and waste treatment U330 Construction U340 Commerce, finance and business U350 Community services U360 Recreational, leisure and sport U370 Residential U400 Unused Note: Within the framework of the LANDMARK project only Agriculture (U110) and Forestry (U120) will be considered
n
Natural capital
Refers to both the living (e.g. fish stocks, forests) and non-living (e.g. minerals, energy resources) aspects of nature which produce value to people, both directly and indirectly. It is this capital that underpins all other capital in our economy and society. Natural capital can often be confused with ecosystem services. However, whilst similar concepts, they are fundamentally different. Natural capital refers to the actual stock (living and non-living parts) that provides value whereas ecosystem services refer to the flow of benefits that this stock provides. Essentially, natural capital is about nature’s assets, whilst ecosystem services relate to the goods and services derived from those assets (http://www.britishecologicalsociety.org/?s=natural+capital).
Nestedness
This is a specific feature of LANDMARK deliverables from WP3 (i.e. the harmonization of proxy indicator systems among different spatial and temporal scales). One of the means to realize this is to collect indicators, and/or proxies, which have overlap for use at different spatial/temporal scales. For instance, land use as proxy should be useful for the EU/national and at the regional scale, while crop rotation should be useful for the regional and farm scale.
Nutrient Cycling
The capacity of a soil to receive nutrients in the form of by-products, to provide nutrients from intrinsic resources or to support the acquisition of nutrients from air or water, and to effectively carry over these nutrients into harvested crops.
p
Proxy
A measure linking information from an indicator to a non-concrete (immaterial) end-point (‘soil function’ in the case of LANDMARK). However, a proxy only contributes to a soil function and cannot be held responsible to full quantification (see proxy indicator system).
Proxy indicator system
A combined set of indicators, weighting factors and algorithms for quantification of a soil function based on the quantification of an agreed set of attributes. A proxy indicator system aims at the assemblage of a wide-ranging set of information from indicators (in fact: all required proxies) and provides a quantification protocol of a specific soil function, being as such a compromise between ease of measurement / data availability, whilst providing sufficient, if minimal, information on the attribute (set). Different proxy indicator systems may arise for one soil function, depending on requirements for a) specific spatial/temporal scale, b) agricultural objective, soil texture and climate conditions, and c) the required performance (reduction of uncertainty) and available budgets to harness the proxy indicator system with reliable data and models. It is the objective of LANDMARK to produce proxy indicator systems which are at least partially overlapping (see ‘nestedness’).
r
Resilience
The ability of an ecosystem to maintain diversity, integrity and ecological processes following disturbance (i.e. by returning to its initial state after stress).
Resistance
The ability of an ecosystem to withstand a stress or perturbation without adverse changes to its structure or function, thereby maintaining an equilibrium state.
s
S x E x M
Expression used to indicate that there are intricate interactions between soil properties i.e. diagnostic features (intrinsic and dynamic ones), environment (climate, weather, slope, etc.) and management (the analogue from crop production is G (genotype) x E x M), acknowledging that soil functions are never uniquely determined by just one of these three factors.
Soil functions
Soil based ecosystem services: an overarching concept referring to one (out of five, following Schulte et al., 2014) elemental aspect of the soil system that contributes to the generation of goods and services.
The contemporary principal soil functions pertaining to agricultural land use (U110) and forestry (U120) include: (1) primary productivity, (2) water purification and regulation, (3) carbon sequestration and other aspects of climate regulation, (4) provision of a habitat for functional and intrinsic biodiversity and (5) nutrient cycling and provision, with:
SFi,j = F (soil features, environmental variables, management options)
where SFi,j is soil function i for agricultural objective j.
More info here http://landmarkproject.eu/soil-functions-concept/
Soil productivity
The capacity of a soil to produce plant biomass for human use, providing food, feed, fibre and fuel within natural or managed ecosystem boundaries.
Soil quality
The degree to which a soil can perform its soil functions. A soil with ‘high soil quality’ can deliver the desired functions to meet demands, whereas a soil with ‘low soil quality’ delivers functions at sub-optimal rates.
w
Water purification
The capacity of a soil to remove harmful compounds from the water that it holds.
Water regulation
The capacity of a soil to receive, store and conduct water for subsequent use and the reduction of consequences of prolonged droughts and risks of flooding and erosion .